A new frequency domain system identification method
نویسنده
چکیده
A new frequency domain system identification method based on a multi-frequency input signal is proposed. Frequency contents of the oscillating signal are estimated using a modified Kaczmarz algorithm proposed in this paper. Lyapunov stability analysis is performed for this new Kaczmarz algorithm and transient bounds for estimation error are established. Moreover, a new method for estimation of the variance of the measurement noise in Kaczmarz algorithms is also described. A comparison of a transient performance of modified Kaczmarz algorithm and a recursive least-squares algorithm is presented. The results are applied to a frequency domain identification of a DC motor.
منابع مشابه
Identification of mineralization features and deep geochemical anomalies using a new FT-PCA approach
The analysis of geochemical data in frequency domain, as indicated in this research study, can provide new exploratory informationthat may not be exposed in spatial domain. To identify deep geochemical anomalies, sulfide zone and geochemical noises in Dalli Cu–Au porphyry deposit, a new approach based on coupling Fourier transform (FT) and principal component analysis (PCA) has beenused. The re...
متن کاملHeuristic Process Model Simplification in Frequency Response Domain
Frequency response diagrams of a system include detailed and recognizable information about the structural and parameter effects of the transfer function model of the system. The information are qualitatively and quantitatively obtainable from simultaneous consideration of amplitude ratio and phase information. In this paper, some rules and relationships are presented for making use of frequenc...
متن کاملPrediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit
In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a ...
متن کاملA new technique for bearing fault detection in the time-frequency domain
This paper presents a new Fast Kurtogram Method in the time-frequency domain using novel types of statistical features instead of the kurtosis. For this study, the problem of four classes for Bearing Fault Detection is investigated using various statistical features. This research is conducted in four stages. At first, the stability of each feature for each fault mode is investigated. Then, res...
متن کاملFrequency domain analysis of transient flow in pipelines; application of the genetic programming to reduce the linearization errors
The transient flow analyzing by the frequency domain method (FDM) is computationally much faster than the method of characteristic (MOC) in the time domain. FDM needs no discretization in time and space, but requires the linearization of governing equations and boundary conditions. Hence, the FDM is only valid for small perturbations in which the system’s hydraulics is almost linear. In this st...
متن کاملFACTS Control Parameters Identification for Enhancement of Power System Stability
The aim of this paper is to investigate a novel approach for output feedback damping controller design ofSTATCOM in order to enhance the damping of power system low frequency oscillations (LFO). The design ofoutput feedback controller is considered as an optimization problem according with the time domain-basedobjective function which is solved by a honey bee mating optimization algorithm (HBMO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Systems & Control Engineering
دوره 226 شماره
صفحات -
تاریخ انتشار 2012